Part 3.1 Differentiation

Definition

Consider a "nice, smooth" function f, such as the one above, with a fixed point P = (a, f(a)). The slope, or gradient, of the chord from P to another point Q = (x, f(x)) on the curve is given by

$$m_{PQ} = \frac{f(x) - f(a)}{x - a}$$

As Q gets "closer and closer" to P, the sequence of chords "seems" to be getting "closer and closer" to a fixed straight line, the *tangent* of f at a. The gradient of the tangent at a, if it exists, will be the derivative of f at a.

Definition 3.1.1 (Cauchy 1821) Let $f : A \to \mathbb{R}$ and suppose that A contains a neighbourhood of a. We say that f is **differentiable at** a if, and only if,

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists. The value of this limit is the **derivative** of f at a, and is denoted by f'(a).

(Recall our conventions concerning limits; to say a limit *exists* is to assume that it is finite.)

In the definition we could have written x = a + h, and noted that $x \to a$ if, and only if, $h \to 0$. Thus we also have

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

A function is differentiable **on an open interval** if it is differentiable at every point in that interval.

Where defined, f'(x) is a function of the variable x. If we set y = f(x) then sometimes we write

$$\frac{dy}{dx}$$
, or even $\frac{dy}{dx}(x)$, instead of $f'(x)$,

and

$$\left. \frac{dy}{dx} \right|_{x=a}$$
 or $\left. \frac{dy}{dx}(a) \right.$ instead of $f'(a)$.

Example 3.1.2 Using any results about limits that you feel appropriate show that for $n \in \mathbb{N}$ the function

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^n$$

is differentiable for all $x \in \mathbb{R}$ and find it's derivative.

Solution Let $n \ge 1$ and $a \in \mathbb{R}$ be given. Consider, for $x \ne a$,

$$\frac{f(x) - f(a)}{x - a} = \frac{x^n - a^n}{x - a} = x^{n-1} + ax^{n-2} + a^2x^{n-3} + \dots + a^{n-2}x + a^{n-1}.$$

Polynomials are everywhere continuous so the value of the limit at a is the value of the polynomial and so

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = na^{n-1}.$$

Since the limit exists f is differentiable at a with derivative $f'(a) = na^{n-1}$.

Yet a and n were arbitrary and so, for all $n \ge 1$, f is everywhere differentiable with $f'(x) = nx^{n-1}$.

Alternatively, consider

$$\frac{f(a+h) - f(a)}{h} = \frac{1}{h} \left((a+h)^n - a^n \right)$$

and apply the Binomial Theorem.

Example 3.1.3 *Extend the above to show that for* $n \in \mathbb{N}$ *the function*

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto x^{-n}$$

is differentiable for all $x \in \mathbb{R} \setminus \{0\}$.

Solution left to students (and Tutorial).

Example 3.1.4 Assume that $e^{\alpha+\beta} = e^{\alpha}e^{\beta}$ for all $\alpha, \beta \in \mathbb{R}$. Prove that

$$\frac{de^x}{dx} = e^x$$

for all $x \in \mathbb{R}$.

Solution Let $a \in \mathbb{R}$ be given. Consider, for $x \neq a$,

$$\frac{f(a+h) - f(a)}{h} = \frac{e^{a+h} - e^a}{h} = e^a \frac{e^h - 1}{h}.$$

The limit as $h \to 0$ of the last factor was seen in an earlier section on Special limits; giving

$$\lim_{x \to a} \frac{f(a+h) - f(a)}{h} = e^a \lim_{x \to a} \frac{e^h - 1}{h} = e^a.$$

Since the limit exists f is differentiable at a with derivative $f'(a) = e^a$.

Yet a were arbitrary and so f is everywhere differentiable with f'(x) = e^x .

Example 3.1.5 Assume the addition formula for sine, namely

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$$

for all $\alpha, \beta \in \mathbb{R}$. Prove that

$$\frac{d}{dx}\sin x = \cos x,$$

for all $x \in \mathbb{R}$.

Solution Let $a \in \mathbb{R}$ be given.

$$\lim_{x \to a} \frac{\sin x - \sin a}{x - a} = \lim_{h \to 0} \frac{\sin (h + a) - \sin a}{h}$$
$$= \lim_{h \to 0} \frac{\sin h \cos a + \sin a \cos h - \sin a}{h}$$
$$= \cos a \lim_{h \to 0} \frac{\sin h}{h} + \sin a \lim_{h \to 0} \frac{\cos h - 1}{h}$$

by Sum Rule for Limits,

.

 $= \cos a \times 1 + \sin a \times 0,$

by results from Part 1,

 $= \cos a.$

So the limit exists and thus $\sin x$ is differentiable at x = a and it's derivative is

$$\left. \frac{d}{dx} \sin x \right|_{x=a} = \cos a$$

Yet $a \in \mathbb{R}$ was arbitrary, hence

$$\frac{d}{dx}\sin x = \cos x,$$

for all $x \in \mathbb{R}$.

See the Appendix for more discussion on this example and how, to avoid a circular argument, we have to **not** use L'Hôpital's Rule to evaluate $\lim_{h\to 0} (\sin h) / h$. To use L'Hôpital's Rule we need to be able to differentiate $\sin x$. Yet to prove we can differentiate $\sin x$ we need, as seen above, to use $\lim_{h\to 0} (\sin h) / h = 1$.

The following result is one you will have also seen in Complex Analysis.

Theorem 3.1.6 If a function is differentiable at a point then it is continuous at that point.

Proof Assume f is differentiable at $a \in \mathbb{R}$. Consider

$$f(x) - f(a) = \frac{f(x) - f(a)}{x - a} (x - a),$$

for $x \neq a$. Let $x \to a$. Then, since f is differentiable at a we have

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) \,,$$

and, in particular, the limit exists. Also $\lim_{x\to a} (x-a) = 0$.

Since both limits exist, we can use the Product Rule for Limits to say

$$\lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} (x - a) \right) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \lim_{x \to a} (x - a)$$
$$= f'(a) \times 0 = 0.$$

Hence $\lim_{x\to a} (f(x) - f(a)) = 0$, i.e. $\lim_{x\to a} f(x) = f(a)$. Thus f is continuous at a.

The converse of this result is **not** true, i.e. f continuous at a does not imply f is differentiable at a. To show this we need a counter-example.

Example 3.1.7 Show that $f : \mathbb{R} \to \mathbb{R}, x \mapsto |x|$ is continuous but not differentiable at x = 0.

Solution For the derivative at 0 consider, for $x \neq 0$,

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = \text{sign}x.$$

This is known not to have a limit at 0 (the right hand limit is 1, the left hand limit -1). Hence f is not differentiable at 0.

Note The modulus function |x| can be written as

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0. \end{cases}$$

Graphically:

Note In 1877 Weierstrass showed that there exist continuous functions that are nowhere differentiable. See the web site for this course for details of such functions.

Remember The Following:

Differentiable at
$$a \implies$$
 Continuous at a
Continuous at $a \implies$ Differentiable at a

Rules for Differentiation

Since differentiation is defined using limits it can be no surprise that the properties satisfied by derivative should bear a close resemblance to those satisfied by limits. (See Section 1.3.)

Before the next result recall

Lemma 3.1.8 If f is continuous at a and $f(a) \neq 0$ then there exists $\delta > 0$ such that if $|x - a| < \delta$ then f(x) is non-zero.

Theorem 3.1.9 Rules of Differentiation

Suppose that both f and g are differentiable at a. Then **Sum Rule**: f + g is differentiable at a and

$$(f+g)'(a) = f'(a) + g'(a),$$

Product Rule: fg is differentiable at a and

$$(fg)'(a) = f(a) g'(a) + f'(a) g(a),$$

Quotient Rule: f/g is differentiable at a and

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a) g(a) - f(a) g'(a)}{g(a)^2}$$

provided that $g(a) \neq 0$.

Proof of the **Sum Rule** is left to Student.

Product Rule: Consider

$$\frac{(fg)(x) - (fg)(a)}{x - a} = \frac{f(x)g(x) - f(a)g(a)}{x - a}$$
$$= \frac{(f(x) - f(a))g(x) + f(a)g(x) - f(a)g(a)}{x - a}$$
$$= g(x)\frac{f(x) - f(a)}{x - a} + f(a)\frac{g(x) - g(a)}{x - a}$$

Then

$$\lim_{x \to a} \frac{(fg)(x) - (fg)(a)}{x - a} = \lim_{x \to a} g(x) \lim_{x \to a} \frac{f(x) - f(a)}{x - a} + f(a) \lim_{x \to a} \frac{g(x) - g(a)}{x - a},$$

by the Sum and Product Rules for limits. Allowable since all the limits on the Right Hands Side (RHS) exist. Thus

$$\lim_{x \to a} \frac{(fg)(x) - (fg)(a)}{x - a} = g(a) f'(a) + f(a) g'(a),$$

where $\lim_{x\to a} g(x) = g(a)$ since g is differentiable and so, by Lemma 3.1.6, continuous at a. Since the limit exists fg is differentiable at a with

$$(fg)'(a) = f(a) g'(a) + f'(a) g(a)$$

Quotient Rule: We are told that g is differentiable at a. This implies that g is continuous at a, i.e. $\lim_{x\to a} g(x) = g(a)$.

By Lemma 3.1.8 because $g(a) \neq 0$ there exists $\delta > 0$ such that for $a - \delta < x < a + \delta$ we have $g(x) \neq 0$.

For such x consider

$$\frac{\frac{1}{g}(x) - \frac{1}{g}(a)}{x - a} = \frac{\frac{1}{g(x)} - \frac{1}{g(a)}}{x - a}$$
$$= -\frac{1}{\frac{1}{g(x)g(a)}} \frac{g(x) - g(a)}{x - a}.$$

Now let $x \to a$ to get

$$\lim_{x \to a} \frac{\frac{1}{g}(x) - \frac{1}{g}(a)}{x - a} = -\frac{1}{g(a)} \frac{1}{\lim_{x \to a} g(x)} \lim_{x \to a} \frac{g(x) - g(a)}{x - a},$$

by the Quotient Rule for limits. This is allowable since all the limits on the RHS exist along with $\lim_{x\to a} g(x) = g(a) \neq 0$. Thus

$$\lim_{x \to a} \frac{\frac{1}{g}(x) - \frac{1}{g}(a)}{x - a} = -\frac{g'(a)}{g^2(a)}.$$

Since the limit exists 1/g is differentiable at a with

$$\left(\frac{1}{g}\right)'(a) = -\frac{g'(a)}{g^2(a)}.$$

Finally,

$$\left(\frac{f}{g}\right)'(a) = \left(f\frac{1}{g}\right)'(a) = f(a)\left(\frac{1}{g}\right)'(a) + f'(a)\frac{1}{g(a)}$$

by the Product Rule. The Quotient Result now follows.

Note there is a common mistake made by far too many students attempting to prove the Product Rule. See the Appendix for details.

Example 3.1.10 All polynomials are differentiable on \mathbb{R} .

Solution is immediate.

Theorem 3.1.11 Rational functions are differentiable wherever they are defined.

Proof immediate.