Definition

Consider a "nice, smooth" function f, such as the one above, with a fixed point $P=(a, f(a))$. The slope, or gradient, of the chord from P to another point $Q=(x, f(x))$ on the curve is given by

$$
m_{P Q}=\frac{f(x)-f(a)}{x-a}
$$

As Q gets "closer and closer" to P, the sequence of chords "seems" to be getting "closer and closer" to a fixed straight line, the tangent of f at a. The gradient of the tangent at a, if it exists, will be the derivative of f at a.

Definition 3.1.1 (Cauchy 1821) Let $f: A \rightarrow \mathbb{R}$ and suppose that A contains a neighbourhood of a. We say that f is differentiable at a if, and only if,

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exists. The value of this limit is the derivative of f at a, and is denoted by $f^{\prime}(a)$.
(Recall our conventions concerning limits; to say a limit exists is to assume that it is finite.)

In the definition we could have written $x=a+h$, and noted that $x \rightarrow a$ if, and only if, $h \rightarrow 0$. Thus we also have

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

A function is differentiable on an open interval if it is differentiable at every point in that interval.

Where defined, $f^{\prime}(x)$ is a function of the variable x. If we set $y=f(x)$ then sometimes we write

$$
\frac{d y}{d x}, \quad \text { or even } \quad \frac{d y}{d x}(x), \quad \text { instead of } f^{\prime}(x),
$$

and

$$
\left.\frac{d y}{d x}\right|_{x=a} \text { or } \frac{d y}{d x}(a) \quad \text { instead of } f^{\prime}(a) .
$$

Example 3.1.2 Using any results about limits that you feel appropriate show that for $n \in \mathbb{N}$ the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{n}
$$

is differentiable for all $x \in \mathbb{R}$ and find it's derivative.
Solution Let $n \geq 1$ and $a \in \mathbb{R}$ be given. Consider, for $x \neq a$,

$$
\frac{f(x)-f(a)}{x-a}=\frac{x^{n}-a^{n}}{x-a}=x^{n-1}+a x^{n-2}+a^{2} x^{n-3}+\cdots+a^{n-2} x+a^{n-1} .
$$

Polynomials are everywhere continuous so the value of the limit at a is the value of the polynomial and so

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=n a^{n-1} .
$$

Since the limit exists f is differentiable at a with derivative $f^{\prime}(a)=n a^{n-1}$.
Yet a and n were arbitrary and so, for all $n \geq 1, f$ is everywhere differentiable with $f^{\prime}(x)=n x^{n-1}$.
Alternatively, consider

$$
\frac{f(a+h)-f(a)}{h}=\frac{1}{h}\left((a+h)^{n}-a^{n}\right)
$$

and apply the Binomial Theorem.
Example 3.1.3 Extend the above to show that for $n \in \mathbb{N}$ the function

$$
f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, x \mapsto x^{-n}
$$

is differentiable for all $x \in \mathbb{R} \backslash\{0\}$.

Solution left to students (and Tutorial).
Example 3.1.4 Assume that $e^{\alpha+\beta}=e^{\alpha} e^{\beta}$ for all $\alpha, \beta \in \mathbb{R}$. Prove that

$$
\frac{d e^{x}}{d x}=e^{x}
$$

for all $x \in \mathbb{R}$.
Solution Let $a \in \mathbb{R}$ be given. Consider, for $x \neq a$,

$$
\frac{f(a+h)-f(a)}{h}=\frac{e^{a+h}-e^{a}}{h}=e^{a} \frac{e^{h}-1}{h} .
$$

The limit as $h \rightarrow 0$ of the last factor was seen in an earlier section on Special limits; giving

$$
\lim _{x \rightarrow a} \frac{f(a+h)-f(a)}{h}=e^{a} \lim _{x \rightarrow a} \frac{e^{h}-1}{h}=e^{a} .
$$

Since the limit exists f is differentiable at a with derivative $f^{\prime}(a)=e^{a}$.
Yet a were arbitrary and so f is everywhere differentiable with $f^{\prime}(x)=$ e^{x}.

Example 3.1.5 Assume the addition formula for sine, namely

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\sin \beta \cos \alpha
$$

for all $\alpha, \beta \in \mathbb{R}$. Prove that

$$
\frac{d}{d x} \sin x=\cos x
$$

for all $x \in \mathbb{R}$.
Solution Let $a \in \mathbb{R}$ be given.

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{\sin x-\sin a}{x-a}=\lim _{h \rightarrow 0} \frac{\sin (h+a)-\sin a}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin h \cos a+\sin a \cos h-\sin a}{h} \\
& =\cos a \lim _{h \rightarrow 0} \frac{\sin h}{h}+\sin a \lim _{h \rightarrow 0} \frac{\cos h-1}{h} \\
& \text { by Sum Rule for Limits, } \\
& =\cos a \times 1+\sin a \times 0, \\
& \text { by results from Part 1, } \\
& =\cos a \text {. }
\end{aligned}
$$

So the limit exists and thus $\sin x$ is differentiable at $x=a$ and it's derivative is

$$
\left.\frac{d}{d x} \sin x\right|_{x=a}=\cos a
$$

Yet $a \in \mathbb{R}$ was arbitrary, hence

$$
\frac{d}{d x} \sin x=\cos x
$$

for all $x \in \mathbb{R}$.
See the Appendix for more discussion on this example and how, to avoid a circular argument, we have to not use L'Hôpital's Rule to evaluate $\lim _{h \rightarrow 0}(\sin h) / h$. To use L'Hôpital's Rule we need to be able to differentiate $\sin x$. Yet to prove we can differentiate $\sin x$ we need, as seen above, to use $\lim _{h \rightarrow 0}(\sin h) / h=1$.

The following result is one you will have also seen in Complex Analysis.
Theorem 3.1.6 If a function is differentiable at a point then it is continuous at that point.

Proof Assume f is differentiable at $a \in \mathbb{R}$. Consider

$$
f(x)-f(a)=\frac{f(x)-f(a)}{x-a}(x-a)
$$

for $x \neq a$. Let $x \rightarrow a$. Then, since f is differentiable at a we have

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a),
$$

and, in particular, the limit exists. Also $\lim _{x \rightarrow a}(x-a)=0$.
Since both limits exist, we can use the Product Rule for Limits to say

$$
\begin{aligned}
\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a}(x-a)\right) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \lim _{x \rightarrow a}(x-a) \\
& =f^{\prime}(a) \times 0=0 .
\end{aligned}
$$

Hence $\lim _{x \rightarrow a}(f(x)-f(a))=0$, i.e. $\lim _{x \rightarrow a} f(x)=f(a)$. Thus f is continuous at a.

The converse of this result is not true, i.e. f continuous at a does not imply f is differentiable at a. To show this we need a counter-example.

Example 3.1.7 Show that $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto|x|$ is continuous but not differentiable at $x=0$.

Solution For the derivative at 0 consider, for $x \neq 0$,

$$
\frac{f(x)-f(0)}{x-0}=\frac{|x|}{x}=\operatorname{sign} x .
$$

This is known not to have a limit at 0 (the right hand limit is 1 , the left hand limit -1). Hence f is not differentiable at 0 .

Note The modulus function $|x|$ can be written as

$$
|x|=\left\{\begin{array}{cc}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

Graphically:

Note In 1877 Weierstrass showed that there exist continuous functions that are nowhere differentiable. See the web site for this course for details of such functions.

Remember The Following:

Differentiable at $a \Longrightarrow$ Continuous at a Continuous at $a \nRightarrow$ Differentiable at a

Rules for Differentiation

Since differentiation is defined using limits it can be no surprise that the properties satisfied by derivative should bear a close resemblance to those satisfied by limits. (See Section 1.3.)

Before the next result recall
Lemma 3.1.8 If f is continuous at a and $f(a) \neq 0$ then there exists $\delta>0$ such that if $|x-a|<\delta$ then $f(x)$ is non-zero.

Theorem 3.1.9 Rules of Differentiation

Suppose that both f and g are differentiable at a. Then
Sum Rule: $f+g$ is differentiable at a and

$$
(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a),
$$

Product Rule: $f g$ is differentiable at a and

$$
(f g)^{\prime}(a)=f(a) g^{\prime}(a)+f^{\prime}(a) g(a),
$$

Quotient Rule: f / g is differentiable at a and

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g(a)^{2}}
$$

provided that $g(a) \neq 0$.

Proof of the Sum Rule is left to Student.
Product Rule: Consider

$$
\begin{aligned}
\frac{(f g)(x)-(f g)(a)}{x-a} & =\frac{f(x) g(x)-f(a) g(a)}{x-a} \\
& =\frac{(f(x)-f(a)) g(x)+f(a) g(x)-f(a) g(a)}{x-a} \\
& =g(x) \frac{f(x)-f(a)}{x-a}+f(a) \frac{g(x)-g(a)}{x-a}
\end{aligned}
$$

Then

$$
\lim _{x \rightarrow a} \frac{(f g)(x)-(f g)(a)}{x-a}=\lim _{x \rightarrow a} g(x) \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}+f(a) \lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a},
$$

by the Sum and Product Rules for limits. Allowable since all the limits on the Right Hands Side (RHS) exist. Thus

$$
\lim _{x \rightarrow a} \frac{(f g)(x)-(f g)(a)}{x-a}=g(a) f^{\prime}(a)+f(a) g^{\prime}(a),
$$

where $\lim _{x \rightarrow a} g(x)=g(a)$ since g is differentiable and so, by Lemma 3.1.6, continuous at a. Since the limit exists $f g$ is differentiable at a with

$$
(f g)^{\prime}(a)=f(a) g^{\prime}(a)+f^{\prime}(a) g(a) .
$$

Quotient Rule: We are told that g is differentiable at a. This implies that g is continuous at a, i.e. $\lim _{x \rightarrow a} g(x)=g(a)$.

By Lemma 3.1.8 because $g(a) \neq 0$ there exists $\delta>0$ such that for $a-\delta<$ $x<a+\delta$ we have $g(x) \neq 0$.

For such x consider

$$
\begin{aligned}
\frac{\frac{1}{g}(x)-\frac{1}{g}(a)}{x-a} & =\frac{\frac{1}{g(x)}-\frac{1}{g(a)}}{x-a} \\
& =-\frac{1}{g(x) g(a)} \frac{g(x)-g(a)}{x-a} .
\end{aligned}
$$

Now let $x \rightarrow a$ to get

$$
\lim _{x \rightarrow a} \frac{\frac{1}{g}(x)-\frac{1}{g}(a)}{x-a}=-\frac{1}{g(a)} \frac{1}{\lim _{x \rightarrow a} g(x)} \lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}
$$

by the Quotient Rule for limits. This is allowable since all the limits on the RHS exist along with $\lim _{x \rightarrow a} g(x)=g(a) \neq 0$. Thus

$$
\lim _{x \rightarrow a} \frac{\frac{1}{g}(x)-\frac{1}{g}(a)}{x-a}=-\frac{g^{\prime}(a)}{g^{2}(a)} .
$$

Since the limit exists $1 / g$ is differentiable at a with

$$
\left(\frac{1}{g}\right)^{\prime}(a)=-\frac{g^{\prime}(a)}{g^{2}(a)}
$$

Finally,

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\left(f \frac{1}{g}\right)^{\prime}(a)=f(a)\left(\frac{1}{g}\right)^{\prime}(a)+f^{\prime}(a) \frac{1}{g(a)}
$$

by the Product Rule. The Quotient Result now follows.
Note there is a common mistake made by far too many students attempting to prove the Product Rule. See the Appendix for details.

Example 3.1.10 All polynomials are differentiable on \mathbb{R}.
Solution is immediate.
Theorem 3.1.11 Rational functions are differentiable wherever they are defined.

Proof immediate.

